Macroeconomic Implications of Changes in the Term Premium

Glenn D. Rudebusch1 Brian P. Sack2 Eric T. Swanson1

1Economic Research
Federal Reserve Bank of San Francisco

2Macroeconomic Advisers

Frontiers in Monetary Policy Research
Federal Reserve Bank of St. Louis
October 19, 2006
Outline

1. Background and Motivation
2. Structural Analysis
3. Macro-Finance Analysis
4. Reduced-Form Analysis
5. Conclusions
Long-Term Interest Rates Very Low in 2004-5

Long-term interest rates have trended lower in recent months even as the Federal Reserve has raised the level of the target federal funds rate by 150 basis points. For the moment, the broadly unanticipated behavior of world bond markets remains a conundrum.

Alan Greenspan, February 2005
Long-term interest rates have trended lower in recent months even as the Federal Reserve has raised the level of the target federal funds rate by 150 basis points. . . For the moment, the broadly unanticipated behavior of world bond markets remains a conundrum.

Alan Greenspan, February 2005
Long-term interest rates have trended lower in recent months even as the Federal Reserve has raised the level of the target federal funds rate by 150 basis points... For the moment, the broadly unanticipated behavior of world bond markets remains a conundrum.

Alan Greenspan, February 2005
Long-Term Interest Rates Very Low in 2004-5

Yield on 10-Year US Treasury Securities and Federal Funds Rate

10-year Treasury yield (right scale)
Long-Term Interest Rates Very Low in 2004-5

Yield on 10-Year US Treasury Securities and Federal Funds Rate

Federal funds rate (left scale)

10-year Treasury yield (right scale)
A significant portion of the sharp decline in the ten-year forward one-year rate over the past year appears to have resulted from a fall in term premiums.

Alan Greenspan, July 2005
A significant portion of the sharp decline in the ten-year forward one-year rate over the past year appears to have resulted from a fall in term premiums.

Alan Greenspan, July 2005
A significant portion of the sharp decline in the ten-year forward one-year rate over the past year appears to have resulted from a fall in term premiums.

Alan Greenspan, July 2005
Term Premium Also Unusually Low in 2004-5

Kim-Wright Term Premium on 10-Year Zero-Coupon Bond

Percent
Two Questions

What are the macroeconomic implications of a change in the term premium?

How should monetary policy respond to a change in the term premium?
Two Questions

What are the macroeconomic implications of a change in the term premium?
Two Questions

What are the macroeconomic implications of a change in the term premium?

How should monetary policy respond to a change in the term premium?
The decline in term premiums in the Treasury market of late may have contributed to keeping long-term interest rates relatively low and, consequently, may have supported the housing sector and consumer spending more generally.

Donald Kohn, July 2005
The Practitioner View

The decline in term premiums in the Treasury market of late may have contributed to keeping long-term interest rates relatively low and, consequently, may have supported the housing sector and consumer spending more generally.

Donald Kohn, July 2005
The Practitioner View

The decline in term premiums in the Treasury market of late may have contributed to keeping long-term interest rates relatively low and, consequently, may have supported the housing sector and consumer spending more generally.

Donald Kohn, July 2005
The “news” over recent months may instead be the [82 bp] run-up in the ten-year yield [over the past 3 months]… In effect, the FOMC has achieved more tightening of financial conditions over the past three months than it had on net over the entire tightening cycle.

Macroeconomic Advisers, April 2006
The Practitioner View

The “news” over recent months may instead be the [82 bp] run-up in the ten-year yield [over the past 3 months]…

In effect, the FOMC has achieved more tightening of financial conditions over the past three months than it had on net over the entire tightening cycle.

Macroeconomic Advisers, April 2006
To the extent that the decline in forward rates can be traced to a decline in the term premium, the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006
The Chairman’s View

To the extent that the decline in forward rates can be traced to a decline in the term premium, . . . the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006
The Chairman’s View

To the extent that the decline in forward rates can be traced to a decline in the term premium, . . . the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006
To the extent that the decline in forward rates can be traced to a decline in the term premium, . . . the effect is financially stimulative and argues for greater monetary policy restraint, all else being equal. Specifically, if spending depends on long-term interest rates, special factors that lower the spread between short-term and long-term rates will stimulate aggregate demand. Thus, when the term premium declines, a higher short-term rate is required to obtain the long-term rate and the overall mix of financial conditions consistent with maximum sustainable employment and stable prices.

Ben Bernanke, March 2006
Foundations of Practitioner/Chairman View Unclear

New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} + \gamma (i_t - E_t \pi_t + 1) + \varepsilon_t \]

Solving forward:

\[y_t = -\gamma E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+j+1}) + \varepsilon_t \]

Note: no role for the term premium in this model

Instead, practitioners' model may be more informal:

IS-LM intuition
Partial equilibrium analysis
Foundations of Practitioner/Chairman View Unclear

New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]
Foundations of Practitioner/Chairman View Unclear

New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]
New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]
New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]

Note: no role for the term premium in this model
Foundations of Practitioner/Chairman View Unclear

New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma}(i_t - E_t\pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]

Note: no role for the term premium in this model

Instead, practitioners’ model may be more informal:
New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]

Note: no role for the term premium in this model

Instead, practitioners’ model may be more informal:
- IS-LM intuition
New Keynesian IS curve (linearized):

\[y_t = \beta E_t y_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t \]

Solving forward:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]

Note: no role for the term premium in this model

Instead, practitioners’ model may be more informal:

- IS-LM intuition
- Partial equilibrium analysis
In general equilibrium, implications of change in term premium are not clear:
In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy
Foundations of Practitioner/Chairman View Unclear

In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy
- Term premium might be partly a “wedge”
Foundations of Practitioner/Chairman View Unclear

In general equilibrium, implications of change in term premium are not clear:

- Why did the term premium change?
- Different structural shocks might have different implications for the economy
- Term premium might be partly a “wedge”
- Term premium might be related to potential output rather than output gap
Structural vs. Reduced-Form Analysis

Structural Analysis
- Completely answers question of interest, in principle
- But number of practical limitations draw some general insights

Macro-Finance Analysis
- Less structural, more tractable
- More successful empirically
- But does not address question of interest

Reduced-Form Analysis
- Literature using yield curve spread to forecast GDP
- Compare popular term premium measures
- Study importance of term premium for forecasting GDP
Structural vs. Reduced-Form Analysis

- **Structural Analysis**
 - completely answers question of interest, in principle
 - but number of practical limitations
 - draw some general insights
Structural vs. Reduced-Form Analysis

- **Structural Analysis**
 - completely answers question of interest, in principle
 - but number of practical limitations
 - draw some general insights

- **Macro-Finance Analysis**
 - less structural, more tractable
 - more successful empirically
 - but does not address question of interest
Structural vs. Reduced-Form Analysis

- **Structural Analysis**
 - completely answers question of interest, in principle
 - but number of practical limitations
 - draw some general insights

- **Macro-Finance Analysis**
 - less structural, more tractable
 - more successful empirically
 - but does not address question of interest

- **Reduced-Form Analysis**
 - literature using yield curve spread to forecast GDP
 - compare popular term premium measures
 - study importance of term premium for forecasting GDP
Structural Analysis

2

- Review Asset Pricing
- Define Benchmark New Keynesian Model
- Graph Impulse Responses
- Discuss Limitations of the Structural Framework
Asset Pricing

Asset pricing:

\[p_t = E_t \left[m_{t+1} p_{t+1} \right] \]

Zero-coupon bond pricing:

\[p(n)_t = E_t \left[m_{t+n-1} p_{t+n-1} \right] \]

\[i_t = -\frac{1}{n} \log p(n)_t \]

Notation: let \(i_t \equiv i(1)_t \)
Asset Pricing

Asset pricing:

\[p_t = E_t [m_{t+1} p_{t+1}] \]
Asset Pricing

Asset pricing:

\[p_t = E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p^{(n)}_t = E_t[m_{t+1}p^{(n-1)}_{t+1}] \]
Asset Pricing

Asset pricing:

\[p_t = E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]
Asset Pricing

Asset pricing:

\[p_t = E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]

Notation: let \(i_t \equiv i_t^{(1)} \)
Benchmark New Keynesian Model

Representative household with preferences:

\[\text{max}_{t \to \infty} \sum_{t=0}^{\infty} \beta^t \left((c_t - bC_{t-1})^{1-\gamma} - \gamma P_t P_{t+1} \right) \]

Stochastic discount factor:

\[m_{t+1} = \beta \left(C_t + 1 - bC_t \right) - \gamma \left(C_t - bC_{t-1} \right) - \gamma P_t P_{t+1} \]

Parameters:

\[\beta = 0.99, \quad b = 0.66, \quad \gamma = 2, \quad \chi = 1.5 \]
Benchmark New Keynesian Model

Representative household with preferences:

\[
\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - bC_{t-1})^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} \right)
\]
Benchmark New Keynesian Model

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - bC_{t-1})^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} \right)$$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta(C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$
Benchmark New Keynesian Model

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - bC_{t-1})^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta(C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$

Parameters: $\beta = .99$, $b = .66$, $\gamma = 2$, $\chi = 1.5$
Benchmark New Keynesian Model

Continuum of differentiated firms:
Benchmark New Keynesian Model

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
Benchmark New Keynesian Model

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
Benchmark New Keynesian Model

Continuum of differentiated firms:
- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t \bar{k}^{1-\alpha} l_t^{\alpha}$
Benchmark New Keynesian Model

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity \(\frac{1+\theta}{\theta} \), markup \(\theta \)
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions \(y_t = A_t \bar{k}^{1-\alpha} l^\alpha_t \)
- have firm-specific capital stocks
Benchmark New Keynesian Model

Continuum of differentiated firms:
- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t \bar{k}^{1-\alpha} l_t^\alpha$
- have firm-specific capital stocks
- face aggregate technology $A_t = \rho_A A_{t-1} + \varepsilon_t^A$
Benchmark New Keynesian Model

Continuum of differentiated firms:
- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t \bar{k}^{1-\alpha} l^\alpha$
- have firm-specific capital stocks
- face aggregate technology $A_t = \rho_A A_{t-1} + \varepsilon_t^A$

Parameters $\theta = .2, \rho_A = .9, \sigma_A^2 = .01^2$
Benchmark New Keynesian Model

Government:

\[G_t = \rho G_{t-1} + \varepsilon_t \]

Parameters:
\[\rho = 0.9, \sigma^2 = 0.004 \]

Monetary Authority:
\[i_t = \rho i_{t-1} + \left(1 - \rho\right) \left[i^* + g_y (y_t - y_{t-1}) + g_\pi \pi_t\right] + \varepsilon_{i_t} \]

Parameters:
\[\rho = 0.7, g_y = 0.5, g_\pi = 2, \sigma^2 = 0.004 \]
Government:
- imposes lump-sum taxes G_t on households
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $G_t = \rho_G G_{t-1} + \varepsilon_t^G$

Parameters
$\rho_G = 0.9$, $\sigma^2_{G} = 0.004^2$
$\rho_i = 0.7$, $g_y = 0$, $g_\pi = 2$, $\sigma^2_{i} = 0.004^2$
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects

$G_t = \rho_G G_{t-1} + \varepsilon_t^G$

Parameters $\rho_G = .9$, $\sigma^2_G = .004^2$
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $G_t = \rho_G G_{t-1} + \varepsilon_t^G$

Parameters $\rho_G = .9$, $\sigma_G^2 = .004^2$

Monetary Authority:
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $G_t = \rho_G G_{t-1} + \varepsilon_t^G$

Parameters $\rho_G = .9, \sigma_G^2 = .004^2$

Monetary Authority:

\[
i_t = \rho_i i_{t-1} + (1 - \rho_i) [i^* + g_y(y_t - y_{t-1}) + g_\pi \pi_t] + \varepsilon_t^i
\]
Benchmark New Keynesian Model

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $G_t = \rho_G G_{t-1} + \varepsilon_t^G$

Parameters $\rho_G = .9$, $\sigma^2_G = .004^2$

Monetary Authority:

\[i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[i^* + g_y (y_t - y_{t-1}) + g_\pi \pi_t \right] + \varepsilon_t^i \]

Parameters $\rho_i = .7$, $g_y = 0.5$, $g_\pi = 2$, $\sigma^2_i = .004^2$
The Term Premium in the Benchmark Model

In DSGE framework, convenient to work with a default-free consol, a perpetuity that pays $1 (nominal) every period.

Price of the consol:

\[p(\infty)_t = 1 + E_t m_t + 1 \]

Risk-neutral consol price:

\[p(\infty)_t^{rn} = 1 + e^{-i t} E_t p(\infty)_t^{rn} + 1 \]

Term premium:

\[\log \left(\frac{p(\infty)_t}{p(\infty)_t^{rn}} \right) - \log \left(\frac{p(\infty)_t^{rn}}{p(\infty)_t^{rn} - 1} \right) \]
The Term Premium in the Benchmark Model

In DSGE framework, convenient to work with a default-free consol, a perpetuity that pays $1 (nominal) every period
The Term Premium in the Benchmark Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1 (nominal) every period

Price of the consol:

\[p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)} \]
The Term Premium in the Benchmark Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1 (nominal) every period

Price of the consol:

\[p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)} \]

Risk-neutral consol price:

\[p_t^{(\infty)rn} = 1 + e^{-it} E_t p_{t+1}^{(\infty)rn} \]
The Term Premium in the Benchmark Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1 (nominal) every period

Price of the consol:

$$ p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)} $$

Risk-neutral consol price:

$$ p_t^{(\infty)rn} = 1 + e^{-it} E_t p_{t+1}^{(\infty)rn} $$

Term premium:
In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays 1 (nominal) every period.

Price of the consol:

$$p_t^{(\infty)} = 1 + E_t m_{t+1} p_{t+1}^{(\infty)}$$

Risk-neutral consol price:

$$p_t^{(\infty)rn} = 1 + e^{-i_t} E_t p_{t+1}^{(\infty)rn}$$

Term premium:

$$\log \left(\frac{p_t^{(\infty)}}{p_t^{(\infty)} - 1} \right) - \log \left(\frac{p_t^{(\infty)rn}}{p_t^{(\infty)rn} - 1} \right)$$
Solving the Model

The benchmark model above has a relatively large number of state variables:
Solving the Model

The benchmark model above has a relatively large number of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}$
Solving the Model

The benchmark model above has a relatively large number of state variables: \(C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t\)
Solving the Model

The benchmark model above has a relatively large number of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

Value function iteration strategies are intractable

We solve the model by approximation around the non-stochastic steady state (perturbation methods). In a first-order approximation, the term premium is zero. In a second-order approximation, the term premium is a constant (sum of variances). So we compute a third-order approximation of the solution around the non-stochastic steady state perturbation. The AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes the nth order approximations.
Solving the Model

The benchmark model above has a relatively large number of state variables: \(C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \)

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)
Solving the Model

The benchmark model above has a relatively large number of state variables: \(C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \)

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
Solving the Model

The benchmark model above has a relatively large number of state variables: \(C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t\)

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
Solving the Model

The benchmark model above has a relatively large number of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a third-order approximation of the solution around nonstochastic steady state
Solving the Model

The benchmark model above has a relatively large number of state variables: \(C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \)

Value function iteration strategies are intractable

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a third-order approximation of the solution around nonstochastic steady state
- perturbationAIM algorithm in Swanson, Anderson, Levin (2006) quickly computes \(n \)th order approximations
Figure 1
Impulse Responses to One Percentage Point Federal Funds Rate Shock

Basis points

Term Premium

Output

Basis points

Quarters

Percent

Output

Quarters
Impulse Responses

Figure 2

Impulse Responses to One Percent Technology Shock

- **Term Premium**
 - Basis points:
 - 0.00
 - -0.05
 - -0.10
 - -0.15
 - -0.20
 - -0.25
 - -0.30
 - -0.35
 - Quarters:
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20

- **Output**
 - Percent:
 - 0.00
 - 0.05
 - 0.10
 - 0.15
 - 0.20
 - Quarters:
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20
Figure 3
Impulse Responses to One Percent Government Purchases Shock

- **Term Premium**
 - Basis points: 0.25
 - Quarters: 0 to 20

- **Output**
 - Percent: 0.7
 - Quarters: 0 to 20
Limitations of the Structural Approach

Theoretical Limitations:
Limitations of the Structural Approach

Theoretical Limitations:

- No consensus on how to model equity premium, risk premia in general
Limitations of the Structural Approach

Theoretical Limitations:

- No consensus on how to model equity premium, risk premia in general
- Term premia in benchmark New Keynesian model were very small, very stable
Limitations of the Structural Approach

Theoretical Limitations:

- No consensus on how to model equity premium, risk premia in general
- Term premia in benchmark New Keynesian model were very small, very stable
- Representative household assumption may work poorly for asset pricing
Limitations of the Structural Approach

Theoretical Limitations:

- No consensus on how to model equity premium, risk premia in general
- Term premia in benchmark New Keynesian model were very small, very stable
- Representative household assumption may work poorly for asset pricing
- Stochastic pricing kernel may not match standard utility functions used in macroeconomic models
Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models.
- Linearization or second-order approximation around nonstochastic steady state is not an option.
- Value function iteration is tractable only for very small models.
- Medium-size New Keynesian models are required to match impulse responses of macroeconomic variables (CEE, ACEL).
- Large-scale models (GEM, SIGMA) becoming standard for macroeconomic policy analysis.
Limitations of the Structural Approach

Computational Limitations:
- Closed-form solutions exist only for simplest possible models
Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models
- Linearization or second-order approximation around nonstochastic steady state is not an option
Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models
- Linearization or second-order approximation around nonstochastic steady state is not an option
- Value function iteration is tractable only for very small models
Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models
- Linearization or second-order approximation around nonstochastic steady state is not an option
- Value function iteration is tractable only for very small models
- Medium-size New Keynesian models are required to match impulse responses of macroeconomic variables (CEE, ACEL)

Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models
- Linearization or second-order approximation around nonstochastic steady state is not an option
- Value function iteration is tractable only for very small models
- Medium-size New Keynesian models are required to match impulse responses of macroeconomic variables (CEE, ACEL)
Limitations of the Structural Approach

Computational Limitations:

- Closed-form solutions exist only for simplest possible models
- Linearization or second-order approximation around nonstochastic steady state is not an option
- Value function iteration is tractable only for very small models
- Medium-size New Keynesian models are required to match impulse responses of macroeconomic variables (CEE, ACEL)
- Large-scale models (GEM, SIGMA) becoming standard for macroeconomic policy analysis
Macro-Finance Analysis

- VAR-based Macro-Finance Models
- New Keynesian Macro-Finance Models
VAR-based Macro-Finance Models

Literature follows Ang and Piazzesi (2003)
VAR-based Macro-Finance Models

Literature follows Ang and Piazzesi (2003)

State variables X_t follow a VAR:

$$X_t = \mu + \Phi X_{t-1} + \Sigma \epsilon_t$$
VAR-based Macro-Finance Models

Literature follows Ang and Piazzesi (2003)

State variables X_t follow a VAR:

$$X_t = \mu + \Phi X_{t-1} + \Sigma \varepsilon_t$$

Ad hoc stochastic pricing kernel:

$$m_{t+1} = \exp \left(-i_t - \frac{1}{2} \lambda_t' \lambda_t - \lambda_t' \varepsilon_{t+1} \right)$$

with

$$\lambda_t = \lambda_0 + \lambda_1 X_t$$

and ε_{t+1} conditionally log-normal
VAR-based Macro-Finance Models

Appealing framework that allows changes in macroeconomic variables to affect term premium
VAR-based Macro-Finance Models

Appealing framework that allows changes in macroeconomic variables to affect term premium

But ignores effect of term premium on macroeconomy:
VAR-based Macro-Finance Models

Appealing framework that allows changes in macroeconomic variables to affect term premium

But ignores effect of term premium on macroeconomy:
- To maintain tractability, literature sharply restricts interaction between term premium and economic variables
VAR-based Macro-Finance Models

Appealing framework that allows changes in macroeconomic variables to affect term premium

But ignores effect of term premium on macroeconomy:
- To maintain tractability, literature sharply restricts interaction between term premium and economic variables
- In Ang-Piazzesi and Bernanke-Reinhart-Sack (2005), term premium assumed to have *no* effect on economy
VAR-based Macro-Finance Models

Appealing framework that allows changes in macroeconomic variables to affect term premium

But ignores effect of term premium on macroeconomy:

- To maintain tractability, literature sharply restricts interaction between term premium and economic variables
- In Ang-Piazzesi and Bernanke-Reinhart-Sack (2005), term premium assumed to have no effect on economy
- In Ang-Piazzesi-Wei (2006), term premium assumed to have same effect on economy as changes in risk-neutral rate
New Keynesian Macro-Finance Models

State variables X_t follow a linearized New Keynesian system of structural equations instead of a VAR.
New Keynesian Macro-Finance Models

State variables X_t follow a linearized New Keynesian system of structural equations instead of a VAR

Gives the model more structure while retaining tractability, empirical fit
New Keynesian Macro-Finance Models

State variables X_t follow a linearized New Keynesian system of structural equations instead of a VAR.

Gives the model more structure while retaining tractability, empirical fit.

As with VAR-based models, though, effects of term premium on economy are assumed rather than estimated or derived:
New Keynesian Macro-Finance Models

State variables X_t follow a linearized New Keynesian system of structural equations instead of a VAR.

Gives the model more structure while retaining tractability, empirical fit.

As with VAR-based models, though, effects of term premium on economy are assumed rather than estimated or derived:

- Linearized IS curve allows no role for term premium.
New Keynesian Macro-Finance Models

State variables X_t follow a linearized New Keynesian system of structural equations instead of a VAR.

Gives the model more structure while retaining tractability, empirical fit.

As with VAR-based models, though, effects of term premium on economy are assumed rather than estimated or derived:

- Linearized IS curve allows no role for term premium.
- Rudebusch-Wu (2004) allow for latent factors to affect economy, but in effect assume that effect of term premium and risk-neutral rate are the same.
Reduced-Form Analysis

- The Yield Curve Slope and Forecasting GDP
- Five Measures of the Term Premium
- Importance of Term Premium for Forecasting GDP
The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \epsilon_t\]
The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \varepsilon_t\]

Note: This is a reduced-form forecasting equation, no structure
The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2(i_t^{(n)} - i_t) + \varepsilon_t\]

Note: This is a reduced-form forecasting equation, no structure

Motivation: \(i_t^{(n)}\) proxies for \(i^*\), so \(i_t^{(n)} - i_t\) proxies for stance of monetary policy
The Yield Curve Slope and Forecasting GDP

A large literature uses slope of yield curve to forecast GDP:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1 (y_t - y_{t-4}) + \beta_2 (i_t^{(n)} - i_t) + \varepsilon_t \]

Note: This is a reduced-form forecasting equation, no structure

Motivation: \(i_t^{(n)} \) proxies for \(i^* \), so \(i_t^{(n)} - i_t \) proxies for stance of monetary policy

Estimates in literature consistently find \(\beta_2 > 0 \), highly significant
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:

- expectations component of $i_t^{(n)}$ should be better measure of i^*
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:

- expectations component of $i_t^{(n)}$ should be better measure of i^*
- term premium itself might have predictive power for GDP
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:

- expectations component of $i_t^{(n)}$ should be better measure of i^*
- term premium itself might have predictive power for GDP

Separate yield curve slope $i_t^{(n)} - i_t$ into:
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:

- expectations component of $i_t^{(n)}$ should be better measure of i^*
- term premium itself might have predictive power for GDP

Separate yield curve slope $i_t^{(n)} - i_t$ into:

$$
\left(\frac{1}{n} \sum_{j=0}^{n-1} E_t i_{t+j} - i_t \right) + \left(i_t^{(n)} - \frac{1}{n} \sum_{j=0}^{n-1} E_t i_{t+j} \right)
$$

- expectations component
- term premium
The Term Premium and Forecasting GDP

If $i_t^{(n)}$ proxies for i^*, then:

- expectations component of $i_t^{(n)}$ should be better measure of i^*
- term premium itself might have predictive power for GDP

Separate yield curve slope $i_t^{(n)} - i_t$ into:

$$
\begin{align*}
\text{exsp}_t &= \left(\frac{1}{n} \sum_{j=0}^{n-1} E_t i_{t+j} - i_t \right) \\
\text{tp}_t &= \left(i_t^{(n)} - \frac{1}{n} \sum_{j=0}^{n-1} E_t i_{t+j} \right)
\end{align*}
$$
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exsp}_t + \beta_3 tp_t + \varepsilon_t\]
Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exsp}_t + \beta_3 \text{tp}_t + \varepsilon_t\]

Forecasts using only yield curve slope in effect impose \(\beta_2 = \beta_3\)
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exp}_t + \beta_3 t p_t + \epsilon_t\]

Forecasts using only yield curve slope in effect impose $\beta_2 = \beta_3$

First paper to separate out term premium and investigate importance for forecasting is Hamilton-Kim (2002)
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exp}_t + \beta_3 \text{tp}_t + \varepsilon_t\]

Forecasts using only yield curve slope in effect impose \(\beta_2 = \beta_3\)

First paper to separate out term premium and investigate importance for forecasting is Hamilton-Kim (2002)

Generally, authors find:
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1 (y_t - y_{t-4}) + \beta_2 \text{exsp}_t + \beta_3 \text{tp}_t + \varepsilon_t\]

Forecasts using only yield curve slope in effect impose \(\beta_2 = \beta_3\)

First paper to separate out term premium and investigate importance for forecasting is Hamilton-Kim (2002)

Generally, authors find:

- \(\beta_2 > 0\), highly significant
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exsp}_t + \beta_3 \text{tp}_t + \epsilon_t\]

Forecasts using only yield curve slope in effect impose \(\beta_2 = \beta_3\)

First paper to separate out term premium and investigate importance for forecasting is Hamilton-Kim (2002)

Generally, authors find:

- \(\beta_2 > 0\), highly significant
- \(\beta_2 > \beta_3\) (can reject \(\beta_2 = \beta_3\))
The Term Premium and Forecasting GDP

Generalize basic GDP forecasting equation to:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1(y_t - y_{t-4}) + \beta_2 \text{exp}t + \beta_3 tp_t + \varepsilon_t\]

Forecasts using only yield curve slope in effect impose $\beta_2 = \beta_3$

First paper to separate out term premium and investigate importance for forecasting is Hamilton-Kim (2002)

Generally, authors find:

- $\beta_2 > 0$, highly significant
- $\beta_2 > \beta_3$ (can reject $\beta_2 = \beta_3$)
- $\beta_3 > 0$, insignificant
Five Measures of the Term Premium

To conduct empirical analysis, we need a term premium measure:
Five Measures of the Term Premium

To conduct empirical analysis, we need a term premium measure:

1. **VAR**
 - use VAR to construct risk-neutral 10-year yield
 - term premium is residual
Five Measures of the Term Premium

To conduct empirical analysis, we need a term premium measure:

1. **VAR**
 - use VAR to construct risk-neutral 10-year yield
 - term premium is residual

2. **Bernanke-Reinhart-Sack (2005)**
 - VAR imposing no-arbitrage restrictions
To conduct empirical analysis, we need a term premium measure:

1. **VAR**
 - use VAR to construct risk-neutral 10-year yield
 - term premium is residual

2. **Bernanke-Reinhart-Sack (2005)**
 - VAR imposing no-arbitrage restrictions

 - New Keynesian model imposing no-arbitrage
Five Measures of the Term Premium

To conduct empirical analysis, we need a term premium measure:

1. **VAR**
 - use VAR to construct risk-neutral 10-year yield
 - term premium is residual

2. **Bernanke-Reinhart-Sack (2005)**
 - VAR imposing no-arbitrage restrictions

 - New Keynesian model imposing no-arbitrage

4. **Kim-Wright (2006)**
 - no-arbitrage three-factor finance model
Five Measures of the Term Premium

To conduct empirical analysis, we need a term premium measure:

1. **VAR**
 - use VAR to construct risk-neutral 10-year yield
 - term premium is residual

2. **Bernanke-Reinhart-Sack (2005)**
 - VAR imposing no-arbitrage restrictions

 - New Keynesian model imposing no-arbitrage

4. **Kim-Wright (2006)**
 - no-arbitrage three-factor finance model

5. **Cochrane-Piazzesi (2005)**
 - excess return forecasting factor
Figure 4
Five Measures of the 10-Year Term Premium

- Bernanke-Reinhart-Sack
- Cochrane-Piazzesi
- Kim-Wright
- Rudebusch-Wu
- VAR
Figure 5
Kim-Wright Decomposition of the 10-Year Zero-Coupon Yield

10-year zero-coupon yield
Risk-neutral 10-year zero-coupon yield
10-year term premium
Table 2
Prediction Equations for GDP Growth

<table>
<thead>
<tr>
<th>Dependent Variable: $y_{t+4} - y_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962–2005 Sample</td>
</tr>
<tr>
<td>$y_t - y_{t-4}$</td>
</tr>
<tr>
<td>$i_t(n) - i_t$</td>
</tr>
<tr>
<td>exsp$_t$</td>
</tr>
<tr>
<td>tp$_t$</td>
</tr>
</tbody>
</table>

Note: we cannot reject hypothesis that coefficients on exsp$_t$, tp$_t$ are equal.
GDP Forecasting Results

Table 2
Prediction Equations for GDP Growth dependent variable: $y_{t+4} - y_t$

<table>
<thead>
<tr>
<th></th>
<th>1962–2005 Sample (1)</th>
<th>1962–2005 Sample (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_t - y_{t-4}$</td>
<td>0.15 (1.57)</td>
<td>0.12 (1.18)</td>
</tr>
<tr>
<td>$i_t^{(n)} - i_t$</td>
<td>0.64 (3.64)</td>
<td></td>
</tr>
<tr>
<td>$exsp_t$</td>
<td></td>
<td>0.68 (4.03)</td>
</tr>
<tr>
<td>tp_t</td>
<td></td>
<td>0.30 (0.92)</td>
</tr>
</tbody>
</table>

Note: we cannot reject hypothesis that coefficients on $exsp_t$, tp_t are equal
Recall new Keynesian IS curve:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]
Regression Specification

Recall new Keynesian IS curve:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \varepsilon_t \]

Suggests that yield spread should be related to level of GDP, rather than growth rate
Recall new Keynesian IS curve:

\[y_t = -\frac{1}{\gamma} E_t \sum_{j=0}^{\infty} \beta^j (i_{t+j} - \pi_{t+1+j}) + \epsilon_t \]

Suggests that yield spread should be related to level of GDP, rather than growth rate.

To account for nonstationarity, forecasting regression specification should then be:

\[(y_{t+4} - y_t) = \beta_0 + \beta_1 (y_t - y_{t-4}) + \beta_2 (\text{exsp}_t - \text{exsp}_{t-4}) \]
\[+ \beta_3 (tp_t - tp_{t-4}) + \epsilon_t \]
GDP Forecasting Results

Table 2 (cont.)
Prediction Equations for GDP Growth

dependent variable: $y_{t+4} - y_t$

<table>
<thead>
<tr>
<th></th>
<th>1962–2005 Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>$y_t - y_{t-4}$</td>
<td>0.32 (3.04)</td>
</tr>
<tr>
<td>$exsp_t$</td>
<td>1.03 (5.64)</td>
</tr>
<tr>
<td>$exsp_{t-4}$</td>
<td>-0.79 (-3.49)</td>
</tr>
<tr>
<td>tp_t</td>
<td>-0.61 (-1.34)</td>
</tr>
<tr>
<td>tp_{t-4}</td>
<td>0.54 (1.24)</td>
</tr>
<tr>
<td>$exsp_t - exsp_{t-4}$</td>
<td></td>
</tr>
<tr>
<td>$tp_t - tp_{t-4}$</td>
<td></td>
</tr>
</tbody>
</table>

Note: we strongly reject hypothesis that coefficients on $exsp_t$, tp_t are equal.
GDP Forecasting Results

Table 2 (cont.)
Prediction Equations for GDP Growth
dependent variable: $y_{t+4} - y_t$

<table>
<thead>
<tr>
<th></th>
<th>1962–2005 Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>$y_t - y_{t-4}$</td>
<td>0.32 (3.04)</td>
</tr>
<tr>
<td>exsp_t</td>
<td>1.03 (5.64)</td>
</tr>
<tr>
<td>exsp_{t-4}</td>
<td>-0.79 (-3.49)</td>
</tr>
<tr>
<td>t_p</td>
<td>-0.61 (-1.34)</td>
</tr>
<tr>
<td>$t_{p_{t-4}}$</td>
<td>0.54 (1.24)</td>
</tr>
<tr>
<td>$\text{exsp}t - \text{exsp}{t-4}$</td>
<td>0.96 (5.62)</td>
</tr>
<tr>
<td>$t_p - t_{p_{t-4}}$</td>
<td>-0.77 (-1.95)</td>
</tr>
</tbody>
</table>

Note: we strongly reject hypothesis that coefficients on exsp_t, t_p are equal
Conclusions

There is no structural, causal relationship running from the term premium to the economy. The correlation is different for different structural shocks.

Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting. The hypothesis that $\beta_1 = \beta_2$ in forecasting regression is strongly rejected.

Declines in the term premium have typically been followed by economic expansion, which is true in both the post-1960 and post-1985 periods.
Conclusions

1. There is no structural, causal relationship running from the term premium to the economy
 - correlation is different for different structural shocks
Conclusions

1. There is no structural, causal relationship running from the term premium to the economy
 - correlation is different for different structural shocks

2. Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
 - strongly rejected hypothesis that $\beta_3 = \beta_2$ in forecasting regression
Conclusions

1. There is no structural, causal relationship running from the term premium to the economy
 - correlation is different for different structural shocks

2. Reduced-form evidence strongly suggests that policymakers should take term premium into account when forecasting
 - strongly rejected hypothesis that $\beta_3 = \beta_2$ in forecasting regression

3. Declines in the term premium have typically been followed by economic expansion
 - true in both the post-1960 and post-1985 periods
Policymakers were right to closely watch declining term premium in 2004-5
Conclusions

4. Policymakers were right to closely watch declining term premium in 2004-5

5. Some reduced-form evidence that the Practitioner/Chairman View of macroeconomic implications of declining term premium was correct
Figure 6
Kim-Wright Term Premium and the CBO Output Gap

- 10-year term premium
- Output gap

Percent

Year
Figure 1

Term Premium for Ten-Year Treasury Security
Implied by Cochrane-Piazzesi Results

Basis Points

-300 -200 -100 0 100 200 300 400
Figure 1
Term Premium for Ten-Year Treasury Security
Implied by Cochrane-Piazzesi Results

Figure 2
Comparison of Term Premium and One-Year Expected Excess Returns
for Ten-Year Treasury Security
Table 1
Correlations between Five Measures of the Term Premium

<table>
<thead>
<tr>
<th></th>
<th>BRS</th>
<th>RW</th>
<th>KW</th>
<th>CP</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KW</td>
<td>0.98</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>0.92</td>
<td>0.87</td>
<td>0.96</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VAR</td>
<td>0.96</td>
<td>0.68</td>
<td>0.94</td>
<td>0.88</td>
<td>1.00</td>
</tr>
</tbody>
</table>