Risk Aversion and the Labor Margin in Dynamic Equilibrium Models

Eric T. Swanson

Economic Research
Federal Reserve Bank of San Francisco

SCE Meetings, San Francisco
July 1, 2011
Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household’s coefficient of relative risk aversion?
Coefficient of Relative Risk Aversion

Suppose a household has preferences:

\[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \]

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t \]

What is the household’s coefficient of relative risk aversion?

Answer: 0
Suppose the household has preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

What is the household’s coefficient of relative risk aversion?

Answer: \(\frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}} \)
Outline of Presentation

- Define risk aversion rigorously in dynamic equilibrium models
- Derive closed-form expressions
- Show the labor margin has dramatic effects on risk aversion
Outline of Presentation

- Define risk aversion rigorously in dynamic equilibrium models
- Derive closed-form expressions
- Show the labor margin has dramatic effects on risk aversion

See the paper for:
- Epstein-Zin preferences
- internal, external habits
- asset pricing details
- numerical computations
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} u(c_\tau, l_\tau), \]

Flow budget constraint:

\[a_{\tau+1} = (1 + r_\tau) a_\tau + w_\tau l_\tau + d_\tau - c_\tau, \]

No-Ponzi condition:

\[\lim_{T \to \infty} \prod_{\tau=t}^{T} (1 + r_{\tau+1})^{-1} a_{\tau+1} \geq 0, \]

\(\{ w_\tau, r_\tau, d_\tau \} \) are exogenous processes, governed by \(\theta_\tau \)
The Value Function

State variables of the household’s problem are \((a_t; \theta_t)\).

Let:

\[
c_t^* \equiv c^*(a_t; \theta_t),
\]
\[
l_t^* \equiv l^*(a_t; \theta_t).
\]
The Value Function

State variables of the household’s problem are \((a_t; \theta_t)\).

Let:

\[
\begin{align*}
c_t^* & \equiv c^*(a_t; \theta_t), \\
l_t^* & \equiv l^*(a_t; \theta_t).
\end{align*}
\]

Value function, Bellman equation:

\[
V(a_t; \theta_t) = u(c_t^*, l_t^*) + \beta E_t V(a_{t+1}^*; \theta_{t+1}),
\]

where:

\[
a_{t+1}^* \equiv (1 + r_t)a_t + w_t l_t^* + d_t - c_t^*.
\]
Assumption 1. *The function* \(u(c_t, l_t) \) *is increasing in its first argument, decreasing in its second, twice-differentiable, and strictly concave.*

Assumption 2. *The value function* \(V : X \to \mathbb{R} \) *for the household’s optimization problem exists and satisfies the Bellman equation*

\[
V(a_t; \theta_t) = \max_{(c_t, l_t) \in \Gamma(a_t; \theta_t)} u(c_t, l_t) + \beta E_t V(a_{t+1}; \theta_{t+1}).
\]

Assumption 3. *For any* \((a_t; \theta_t) \in X\), *the household’s optimal choice* \((c^*_t, l^*_t)\) *lies in the interior of* \(\Gamma(a_t; \theta_t)\).

Assumption 4. *The value function* \(V(\cdot; \cdot) \) *is twice-differentiable. (It then follows that* \(c^*, l^*\) *are differentiable.*)
Assumptions about the Economic Environment

Assumption 5. *The household is atomistic.*

Assumption 6. *The household is representative.*

Assumption 7. *The model has a nonstochastic steady state, \(x_t = x_{t+k} \) for \(k = 1, 2, \ldots \), and \(x \in \{c, l, a, w, r, d, \theta\} \).
Assumptions about the Economic Environment

Assumption 5. *The household is atomistic.*

Assumption 6. *The household is representative.*

Assumption 7. *The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, \ldots$, and $x \in \{c, l, a, w, r, d, \theta\}$."

Assumption 7′. *The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable change of variables.*
Compare:

\[E \ u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E \, u(c + \sigma \varepsilon) \, \text{ vs. } \, u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E \ u(c + \sigma \varepsilon) \ \text{vs.} \ u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E \ u(c + \sigma \varepsilon) \approx u(c) + u'(c) \sigma E[\varepsilon] + \frac{1}{2} u''(c) \sigma^2 E[\varepsilon^2], \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

$$E u(c + \sigma \varepsilon) \text{ vs. } u(c - \mu)$$

Compute:

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2.$$
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E \ u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E \ u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2. \]

\[\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^2}{2}. \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2. \]

\[\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^2}{2}. \]

Coefficient of absolute risk aversion is defined to be:

\[\lim_{\sigma \to 0} \frac{2 \mu(\sigma)}{\sigma^2} = \frac{-u''(c)}{u'(c)}. \]
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period \(t \):

\[
a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma \epsilon_{t+1},
\]

(*)

Note we cannot easily consider gambles over:

- \(a_t \) (state variable, already known at \(t \))
- \(c_t \) (choice variable)

Note also (*) is equivalent to gambles over income:

\[
a_{t+1} = (1 + r_t) a_t + w_t l_t + (d_t + \sigma \epsilon_{t+1}) - c_t,
\]

or asset returns:

\[
a_{t+1} = (1 + r_t + \sigma \tilde{\epsilon}_t) a_t + w_t l_t + d_t - c_t,
\]

Note connection to asset pricing.
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$ a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1}, \quad (*) $$
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1}, \quad (*)$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)

Note also $(*)$ is equivalent to gambles over income:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

or asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t l_t + d_t - c_t,$$
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1}, \quad (*)$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)

Note also (*) is equivalent to gambles over income:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

or asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t l_t + d_t - c_t,$$

Note connection to asset pricing.
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu.$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$V_1(a_t; \theta_t) \frac{\mu}{(1 + r_t)}$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$\beta E_t V_1(a^*_t, \theta_{t+1}) \mu.$$
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$\beta E_t V_1(a^*_t; \theta_{t+1}) \mu.$$

Loss from σ:

$$\beta E_t V_{11}(a^*_t; \theta_{t+1}) \frac{\sigma^2}{2}.$$
Proposition 1. The household’s coefficient of absolute risk aversion at \((a_t; \theta_t)\) is given by:

\[-\frac{E_t V_{11}(a^*_{t+1}; \theta_{t+1})}{E_t V_1(a^*_{t+1}; \theta_{t+1})}.
\]
Proposition 1. The household’s coefficient of absolute risk aversion at \((a_t; \theta_t)\) is given by:

\[
- \frac{E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.
\]

Coefficient of Absolute Risk Aversion

Proposition 1. *The household’s coefficient of absolute risk aversion at \((a_t; \theta_t)\) is given by:*

\[
- \frac{E_t V_{11}(a_{t+1}^*; \theta_{t+1})}{E_t V_1(a_{t+1}^*; \theta_{t+1})}.
\]

Evaluated at the nonstochastic steady state, this simplifies to:

\[
- \frac{V_{11}(a; \theta)}{V_1(a; \theta)}.
\]

Solve for V_1 and V_{11}

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) u_1(c^*_t, l^*_t).$$ \hfill (\ast)
Solve for V_1 and V_{11}

Benveniste-Scheinkman:

$$V_1(a_t; \theta_t) = (1 + r_t) u_1(c^*_t, l^*_t).$$ \hfill (\star)

Differentiate (\star) to get:

$$V_{11}(a_t; \theta_t) = (1 + r_t) \left[u_{11}(c^*_t, l^*_t) \frac{\partial c^*_t}{\partial a_t} + u_{12}(c^*_t, l^*_t) \frac{\partial l^*_t}{\partial a_t} \right].$$
Solve for $\frac{\partial l^*_t}{\partial a_t}$ and $\frac{\partial c^*_t}{\partial a_t}$

Household intratemporal optimality: $-u_2(c^*_t, l^*_t) = w_t u_1(c^*_t, l^*_t)$.
Solve for $\partial l_t^*/\partial a_t$ and $\partial c_t^*/\partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$.

Differentiate to get:

$$\frac{\partial l_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t},$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$
Solve for $\partial l_t^*/\partial a_t$ and $\partial c_t^*/\partial a_t$

Household intratemporal optimality: $-u_2(c_t^*, l_t^*) = w_t u_1(c_t^*, l_t^*)$.

Differentiate to get:

$$\frac{\partial l_t^*}{\partial a_t} = -\lambda_t \frac{\partial c_t^*}{\partial a_t},$$

$$\lambda_t \equiv \frac{w_t u_{11}(c_t^*, l_t^*) + u_{12}(c_t^*, l_t^*)}{u_{22}(c_t^*, l_t^*) + w_t u_{12}(c_t^*, l_t^*)}.$$

Use Euler equation and budget constraint to derive:

$$\frac{\partial c_t^*}{\partial a_t} = \frac{r}{1 + w\lambda}.$$
Solve for Coefficient of Absolute Risk Aversion

\[V_1(a; \theta) = (1 + r) u_1(c, l), \]
Solve for Coefficient of Absolute Risk Aversion

\[V_1(a; \theta) = (1 + r) u_1(c, l), \]

\[V_{11}(a; \theta) = (1 + r) \left[u_{11}(c, l) \frac{\partial c^*_t}{\partial a_t} + u_{12}(c, l) \frac{\partial l^*_t}{\partial a_t} \right], \]
Solve for Coefficient of Absolute Risk Aversion

\[V_1(a; \theta) = (1 + r) u_1(c, l), \]

\[V_{11}(a; \theta) = (1 + r) \left[u_{11}(c, l) \frac{\partial c^*_t}{\partial a_t} + u_{12}(c, l) \frac{\partial l^*_t}{\partial a_t} \right], \]

\[\frac{\partial l^*_t}{\partial a_t} = -\lambda \frac{\partial c^*_t}{\partial a_t}, \]

\[\frac{\partial c^*_t}{\partial a_t} = \frac{r}{1 + w\lambda}. \]
Solve for Coefficient of Absolute Risk Aversion

\[V_1(a; \theta) = (1 + r) u_1(c, l), \]

\[V_{11}(a; \theta) = (1 + r) \left[u_{11}(c, l) \frac{\partial c^*}{\partial a_t} + u_{12}(c, l) \frac{\partial l^*}{\partial a_t} \right], \]

\[\frac{\partial l^*}{\partial a_t} = -\lambda \frac{\partial c^*}{\partial a_t}, \]

\[\frac{\partial c^*}{\partial a_t} = \frac{r}{1 + w\lambda}. \]

Proposition 2. The household’s coefficient of absolute risk aversion in Proposition 1, evaluated at steady state, satisfies:

\[\frac{- V_{11}(a; \theta)}{V_1(a; \theta)} = -\frac{u_{11}}{u_1} + \frac{\lambda u_{12}}{1 + w\lambda} \frac{r}{1 + w\lambda}. \]
Consider Arrow-Pratt gamble of general size A_t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - A_t \mu.$$
Consider Arrow-Pratt gamble of general size A_t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$- \frac{A_t E_t V_{11}(a^*_{t+1}; \theta_{t+1})}{E_t V_1(a^*_{t+1}; \theta_{t+1})} \quad (*)$$

A natural benchmark for A_t is household wealth at time t.

Relative Risk Aversion
Consider Arrow-Pratt gamble of general size A_t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + A_t \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - A_t \mu.$$

Risk aversion coefficient for this gamble:

$$- \frac{A_t E_t V_{11}(a^*_{t+1}; \theta_{t+1})}{E_t V_1(a^*_{t+1}; \theta_{t+1})}. \quad (*)$$

A natural benchmark for A_t is household wealth at time t.
Household Wealth

In DSGE framework, household wealth has more than one component:

- present value of labor income, $w_t l_t$
- present value of net transfers, d_t
- present value of leisure, $w_t (\bar{l} - l_t)$
In DSGE framework, household wealth has more than one component:

- present value of labor income, $w_t l_t$
- present value of net transfers, d_t
- present value of leisure, $w_t (\bar{l} - l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \bar{l} is arbitrary.
Household Wealth

In DSGE framework, household wealth has more than one component:

- present value of labor income, $w_t l_t$
- present value of net transfers, d_t
- present value of leisure, $w_t (\bar{l} - l_t)$?

Leisure, in particular, can be hard to define, e.g.,

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

and \bar{l} is arbitrary.

Different definitions of household wealth lead to different definitions of relative risk aversion.
Two Coefficients of Relative Risk Aversion

Definition 1. *The consumption-based coefficient of relative risk aversion is given by (\(*\)), with* \(A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t, \tau} c_\tau^* \).

In steady state:

\[
- \frac{A V_{11}(a; \theta)}{V_1(a; \theta)} = \frac{-u_{11} + \lambda u_{12}}{u_1} c \frac{c}{1 + w \lambda}.
\]
Two Coefficients of Relative Risk Aversion

Definition 1. The consumption-based coefficient of relative risk aversion is given by $(*)$, with $A_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} c^*_\tau$.

In steady state:

$$-A \frac{V_{11}(a; \theta)}{V_1(a; \theta)} = -u_{11} + \lambda u_{12} \frac{c}{1 + w\lambda}.$$

Definition 2. The consumption-and-leisure-based coefficient of relative risk aversion is given by $(*)$, with $\tilde{A}_t \equiv (1 + r_t)^{-1} E_t \sum_{\tau=t}^{\infty} m_{t,\tau} (c^*_\tau + w_{\tau}(\bar{l} - l^*_\tau))$.

In steady state:

$$-\tilde{A} \frac{V_{11}(a; \theta)}{V_1(a; \theta)} = -u_{11} + \lambda u_{12} \frac{c + w(\bar{l} - l)}{1 + w\lambda}.$$
Example 1

Utility kernel:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]
Example 1

Utility kernel:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

Consumption-based coefficient of relative risk aversion is:

\[\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} \]
Example 1

Utility kernel:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1 - \gamma} - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Consumption-based coefficient of relative risk aversion is:

\[\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} = \frac{-c u_{11}}{u_1} \frac{1}{1 + w\lambda} \]
Example 1

Utility kernel:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1 - \gamma} - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Consumption-based coefficient of relative risk aversion is:

\[\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} \]

\[= \frac{-c u_{11}}{u_1} \frac{1}{1 + w\lambda} \]

\[= \gamma \frac{1}{1 + \gamma/\chi} \]
Example 1

Utility kernel:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

Consumption-based coefficient of relative risk aversion is:

\[
\frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} = \frac{-cu_{11}}{u_1} \frac{1}{1 + w\lambda} = \gamma \frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}}
\]
Example 1

Coefficient of relative risk aversion

\(\chi = 0 \)
\(\chi = 1 \)
\(\chi = 2 \)
\(\chi = 3 \)
\(\chi = 4 \)
\(\chi = 5 \)
\(\chi = \infty \)
Risk Aversion Away from the Steady State

Utility:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \quad \gamma = 2, \chi = 1.5 \]
Risk Aversion Away from the Steady State

Utility:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

\[\gamma = 2, \quad \chi = 1.5 \]

Plus standard RBC model, solved numerically:
Risk Aversion Away from the Steady State

Utility:

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

\[\gamma = 2, \quad \chi = 1.5 \]

Plus standard RBC model, solved numerically:
Risk Aversion and the Equity Premium ($\gamma = 200$)

![Graph showing the relationship between risk aversion and the equity premium. The x-axis represents the coefficient of relative risk aversion (R_c), and the y-axis represents the equity premium in percentage per annum. The graph illustrates how the equity premium increases with increasing risk aversion.]
Conclusions

1. The labor margin has dramatic effects on risk aversion

2. Risk aversion is the right concept for asset pricing, $E_t m_{t+1} p_{t+1}$

3. Arrow-Pratt risk neutrality holds for any u with $u_{11} u_{22} - u_{12}^2 = 0$

4. Risk aversion and the intertemporal elasticity of substitution are nonreciprocal when there is labor in the model

5. Simple, closed-form expressions for risk aversion in DSGE models with:
 - expected utility preferences
 - Epstein-Zin preferences
 - external or internal habits
 - valid away from steady state