A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson
University of California, Irvine

NBER Summer Institute
Methods and Applications for DSGE Models
July 10, 2014
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle
- credit spread puzzle
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle—Why is risk aversion in financial markets so high?
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle—Why is risk aversion in financial markets so high?

- financial intermediaries: Adrian-Etula-Muir (2013)
Motivation

Secondary theme: Keep the model as simple as possible
Motivation

Secondary theme: Keep the model as simple as possible

Two key ingredients:

- Epstein-Zin preferences
- nominal rigidities
Motivation

Secondary theme: Keep the model as simple as possible

Two key ingredients:
- Epstein-Zin preferences
- nominal rigidities

Implications for Macroeconomics:
- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback
Motivation

Secondary theme: Keep the model as simple as possible

Two key ingredients:
- Epstein-Zin preferences
- nominal rigidities

Implications for Macroeconomics:
- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback

Implications for Finance:
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)
- unifying explanation for asset pricing puzzles
Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity
Households

Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

\[a_{t+1} = e^{it}a_t + w_t l_t + d_t - c_t \]
Households

Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

\[a_{t+1} = e^i a_t + w_t l_t + d_t - c_t \]

Calibration: (IES = 1), \(\chi = 2 \), \(l = 1 \) (\(\eta = .54 \))
Generalized Recursive Preferences

Household chooses state-contingent \{ (c_t, l_t) \} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t) + \beta \left(E_t U(a_{t+1}; \theta_{t+1}) \right)^{\tilde{\alpha}} \right]^{1/(1-\tilde{\alpha})}
\]

It's easy to map back and forth from \(U \) to \(V \); moreover, \(V \) makes formulas in the paper simpler. \(V \) is more closely related to standard dynamic programming results, regularity conditions, and FOCs.
Generalized Recursive Preferences

Household chooses state-contingent \{ (c_t, l_t) \} to maximize

\[V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)} \]

Note: Generalized recursive preferences are often written as:

\[U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t)^{\rho} + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\tilde{\alpha}} \right)^{\rho/\tilde{\alpha}} \right]^{1/\rho} \]
Generalized Recursive Preferences

Household chooses state-contingent \{(c_t, l_t)\} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t) + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\tilde{\alpha}} \right)^{\rho / \tilde{\alpha}} \right]^{1/\rho}
\]

It’s easy to map back and forth from \(U\) to \(V\); moreover,

- \(V\) makes formulas in the paper simpler
- \(V\) is more closely related to standard dynamic programming results, regularity conditions, and FOCs
- additively separable \(u\) is easier to consider in \(V\)
Generalized Recursive Preferences

Household chooses state-contingent \(\{(c_t, l_t)\} \) to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t)^{\rho} + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\tilde{\alpha}} \right)^\rho/\tilde{\alpha} \right]^{1/\rho}
\]

It’s easy to map back and forth from \(U \) to \(V \); moreover,

- \(V \) makes formulas in the paper simpler
- \(V \) is more closely related to standard dynamic programming results, regularity conditions, and FOCs
- additively separable \(u \) is easier to consider in \(V \)

Calibration: \(\beta = .99, \ RRA \ (R^c) = 60 \ (\alpha = 80.13) \)
Firms are very standard:
- continuum of monopolistically competitive firms (elasticity ϵ)
- Calvo price setting (probability $1 - \xi$)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} l_t(f)^\theta$
- fixed firm-specific capital stocks k

Random walk technology A_t
- simplicity
- comparability to Finance
- helps match equity premium

Calibration:
- $\epsilon = 10$
- $\xi = 0.75$
- $\theta = 0.6$
- $\sigma_{A_t} = 0.007$, ($\rho_{A_t} = 1$)
- $k_{Y_4} = 2.5$
Firms

Firms are very standard:

- continuum of monopolistically competitive firms (elasticity ϵ)
- Calvo price setting (probability $1 - \xi$)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} l_t(f)^\theta$
- fixed firm-specific capital stocks k

Random walk technology A_t

- simplicity
- comparability to Finance
- helps match equity premium

Calibration: $\epsilon = 10$, $\xi = 0.75$, $\theta = 0.6$, $\sigma_A = .007$, $(\rho_A = 1)$, $\frac{k}{4Y} = 2.5$
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{Y}_t) \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_{\pi}(\pi_t - \bar{\pi}) + \phi_y(y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho \bar{y}_{t-1} + (1 - \rho \bar{y})y_t \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho \bar{y} \bar{y}_{t-1} + (1 - \rho \bar{y}) y_t \]

Rule has no inertia:
- simplicity
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho_y \bar{y}_{t-1} + (1 - \rho_y) y_t \]

Rule has no inertia:

- simplicity

Calibration: \(\phi_\pi = 0.5, \phi_y = 0.75, \bar{\pi} = 0.01, \rho_y = 0.9\)
Write equations of the model in recursive form
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

Model has 3 state variables \((Y_{t-1}, \Delta_{t-1}, A_{t-1})\) plus 1 shock \((\varepsilon_t)\)
Impulse Responses

Technology A_t
Impulse Responses

Consumption C_t
Impulse Responses

Inflation π_t

ann. pct.

10 20 30 40 50

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

pct.

Inflation π_t
Impulse Responses

Short–term nominal interest rate i_t

ann. pct.
Short–term real interest rate r_t
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]

Calibration: \(\nu = 3 \)
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.39</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>7.29</td>
</tr>
</tbody>
</table>
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.39</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>7.29</td>
</tr>
<tr>
<td>60</td>
<td>0.995</td>
<td>1.99</td>
</tr>
<tr>
<td>60</td>
<td>0.99</td>
<td>1.19</td>
</tr>
<tr>
<td>60</td>
<td>0.98</td>
<td>0.61</td>
</tr>
<tr>
<td>60</td>
<td>0.95</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Real Government Debt

Real n-period zero-coupon bond price:

\[p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)}, \]

\[p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t} \]
Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = - \frac{1}{n} \log p_t^{(n)}$$
Real Government Debt

Real n-period zero-coupon bond price:

$$p_{t}^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_{t}^{(0)} = 1, \quad p_{t}^{(1)} = e^{-r_t}$$

Real yield:

$$r_{t}^{(n)} = -\frac{1}{n} \log p_{t}^{(n)}$$

Real term premium:

$$\psi_{t}^{(n)} = r_{t}^{(n)} - \hat{r}_{t}^{(n)}$$
Real n-period zero-coupon bond price:

$$
p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},
$$

$$
p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}
$$

Real yield:

$$
r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}
$$

Real term premium:

$$
\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}
$$

where

$$
\hat{r}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)}
$$

$$
\hat{p}_t^{(n)} = e^{-r_t} E_t \hat{p}_{t+1}^{(n-1)}
$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_{t}^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_{t}^{(0)} = 1, \quad p_{t}^{(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_{t}^{(n)}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_{t}^{\$(n)} = E_{t} m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_{t}^{\$(0)} = 1, \quad p_{t}^{\$(1)} = e^{-i_{t}}$$

Nominal yield:

$$i_{t}^{(n)} = -\frac{1}{n} \log p_{t}^{\$(n)}$$

Nominal term premium:

$$\psi_{t}^{\$(n)} = i_{t}^{(n)} - \hat{i}_{t}^{(n)}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Nominal term premium:

$$\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$

where

$$\hat{i}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)}$$

$$\hat{p}_t^{(n)} = e^{-i_t} E_t \hat{p}_{t+1}^{(n-1)}$$
Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)−(2y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2013<sup>a</sup></td>
<td>1.45</td>
<td>1.71</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US TIPS, 2004–2013<sup>a</sup></td>
<td>0.29</td>
<td>0.41</td>
<td>0.72</td>
<td>1.01</td>
<td>1.34</td>
<td>1.05</td>
</tr>
<tr>
<td>US TIPS, 2004–2007<sup>a</sup></td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.70</td>
</tr>
<tr>
<td>UK indexed gilts, 1983–1995<sup>b</sup></td>
<td>6.12</td>
<td>5.29</td>
<td>4.34</td>
<td></td>
<td>4.12</td>
<td>−2.00</td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2013<sup>c</sup></td>
<td>2.19</td>
<td>2.15</td>
<td>2.26</td>
<td>2.35</td>
<td>2.44</td>
<td>0.25</td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007<sup>c</sup></td>
<td>2.82</td>
<td>2.77</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td>−0.02</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>1.92</td>
<td>1.89</td>
<td>1.84</td>
<td>1.81</td>
<td>1.77</td>
<td>−0.15</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2010) online dataset

^bEvans (1999)

^cBank of England web site
Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)–(2y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2013<sup>a</sup></td>
<td>1.45</td>
<td>1.71</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US TIPS, 2004–2013<sup>a</sup></td>
<td>0.29</td>
<td>0.41</td>
<td>0.72</td>
<td>1.01</td>
<td>1.34</td>
<td>1.05</td>
</tr>
<tr>
<td>US TIPS, 2004–2007<sup>a</sup></td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.70</td>
</tr>
<tr>
<td>UK indexed gilts, 1983–1995<sup>b</sup></td>
<td>6.12</td>
<td>5.29</td>
<td>4.34</td>
<td>4.12</td>
<td></td>
<td>−2.00</td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2013<sup>c</sup></td>
<td>2.19</td>
<td>2.15</td>
<td>2.26</td>
<td>2.35</td>
<td>2.44</td>
<td>0.25</td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007<sup>c</sup></td>
<td>2.82</td>
<td>2.77</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td>−0.02</td>
</tr>
<tr>
<td>Macroeconomic model</td>
<td>1.92</td>
<td>1.89</td>
<td>1.84</td>
<td>1.81</td>
<td>1.77</td>
<td>−0.15</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2010) online dataset
^bEvans (1999)
^cBank of England web site

Real long-term bonds are like insurance
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)−(1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2013(^a)</td>
<td>5.44</td>
<td>5.66</td>
<td>5.84</td>
<td>6.11</td>
<td>6.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2013(^a)</td>
<td>5.64</td>
<td>5.87</td>
<td>6.07</td>
<td>6.38</td>
<td>6.62</td>
<td>6.89</td>
<td>1.25</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007(^a)</td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2013(^b)</td>
<td>7.22</td>
<td>7.39</td>
<td>7.55</td>
<td>7.79</td>
<td>7.97</td>
<td>8.15</td>
<td>0.93</td>
</tr>
<tr>
<td>UK gilts, 1990–2007(^b)</td>
<td>6.20</td>
<td>6.30</td>
<td>6.38</td>
<td>6.48</td>
<td>6.51</td>
<td>6.50</td>
<td>0.30</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>4.52</td>
<td>4.79</td>
<td>5.01</td>
<td>5.36</td>
<td>5.60</td>
<td>5.84</td>
<td>1.32</td>
</tr>
</tbody>
</table>

\(^a\)Gürkaynak, Sack, and Wright (2007) online dataset
\(^b\)Bank of England web site
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)−(1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2013<sup>a</sup></td>
<td>5.44</td>
<td>5.66</td>
<td>5.84</td>
<td>6.11</td>
<td>6.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2013<sup>a</sup></td>
<td>5.64</td>
<td>5.87</td>
<td>6.07</td>
<td>6.38</td>
<td>6.62</td>
<td>6.89</td>
<td>1.25</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2013<sup>b</sup></td>
<td>7.22</td>
<td>7.39</td>
<td>7.55</td>
<td>7.79</td>
<td>7.97</td>
<td>8.15</td>
<td>0.93</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.30</td>
<td>6.38</td>
<td>6.48</td>
<td>6.51</td>
<td>6.50</td>
<td>0.30</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>4.52</td>
<td>4.79</td>
<td>5.01</td>
<td>5.36</td>
<td>5.60</td>
<td>5.84</td>
<td>1.32</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset
^bBank of England web site

Supply shocks make long-term nominal bonds risky: inflation risk
Nominal Term Premium
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi t+1} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi t+1} \left[(1 - 1_t^{d t+1})(1 + \delta p_{t+1}^d) + 1_t^{d t+1} \omega_{t+1} p_t^d \right] \]
Defaultable Debt

Default-free depreciating nominal consol:

\[
p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)
\]

Yield to maturity:

\[
i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right)
\]

Nominal consol with default:

\[
p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - 1_{t+1}^d)(1 + \delta p_{t+1}^d) + 1_{t+1}^d \omega_{t+1} p_t^d \right]
\]

Yield to maturity:

\[
i_t^d = \log \left(\frac{1}{p_t^d} + \delta \right)
\]
Defaultable Debt

Default-free depreciating nominal consol:

\[p^c_t = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p^c_{t+1}) \]

Yield to maturity:

\[i^c_t = \log \left(\frac{1}{p^c_t} + \delta \right) \]

Nominal consol with default:

\[p^d_t = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}^d_{t+1})(1 + \delta p^d_{t+1}) + \mathbf{1}^d_{t+1} \omega_{t+1} p^d_t \right] \]

Yield to maturity:

\[i^d_t = \log \left(\frac{1}{p^d_t} + \delta \right) \]

The credit spread is \(i^d_t - i^c_t \)
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note: (.006) (.58) = 34.8 bp

If default is not cyclical, then it's not risky.

Compare to data: credit spread is about 120 bp (Chen-Collin-Dufresne-Goldstein, 2009; Chen, 2010)
Table 5: Credit Spread

<table>
<thead>
<tr>
<th></th>
<th>Average Ann. Cyclicity</th>
<th>Default Prob. Cyclicality</th>
<th>Average Recovery Rate</th>
<th>Default Prob. Recovery Rate</th>
<th>Credit Spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>default prob.</td>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[(.006)(.58) = 34.8 \text{ bp}\]
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[(.006)(.58) = 34.8 \text{ bp}\]

If default is not cyclical, then it's not risky.
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[(.006)(.58) = 34.8 \text{ bp}\]

If default is not cyclical, then it’s not risky

Compare to data: credit spread is about 120 bp (Chen-Collin-Dufresne-Goldstein, 2009; Chen, 2010)
Default Rate is Countercyclical

Source: Chen (2010)
Recovery Rate is Procyclical

A. Default rates and credit spreads

- Moody's Recovery Rates
 - Altman Recovery Rates
 - Long-Term Mean

source: Chen (2010)
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>125.5</td>
</tr>
<tr>
<td>average ann. default prob.</td>
<td>cyclicality of default prob.</td>
<td>average recovery rate</td>
<td>cyclicality of recovery rate</td>
<td>credit spread (bp)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>125.5</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>2.5</td>
<td>136.8</td>
</tr>
</tbody>
</table>
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>125.5</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>2.5</td>
<td>136.8</td>
</tr>
<tr>
<td>.006</td>
<td>−0.15</td>
<td>.42</td>
<td>2.5</td>
<td>77.1</td>
</tr>
<tr>
<td>.006</td>
<td>−0.6</td>
<td>.42</td>
<td>2.5</td>
<td>345.7</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>1.25</td>
<td>131.2</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>5</td>
<td>148.1</td>
</tr>
</tbody>
</table>
Discussion

1. Conditional heteroskedasticity
2. First-order vs. second-order stationarity
3. IES ≤ 1 vs. IES ≫ 1
4. Volatility shocks
5. Financial accelerator
Note that

\[\psi^e_t = - \text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]
Endogenous Conditional Heteroskedasticity

Note that

\[\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]

Risk premium can only vary over time if model implies conditional heteroskedasticity.
Note that

$$\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Risk premium can only vary over time if model implies conditional heteroskedasticity

Traditional finance approach: assume shocks are heteroskedastic
Endogenous Conditional Heteroskedasticity

Note that

\[\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]

Risk premium can only vary over time if model implies conditional heteroskedasticity

Traditional finance approach: assume shocks are heteroskedastic

Here, conditional heteroskedasticity is endogenous
Note that

$$\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Risk premium can only vary over time if model implies conditional heteroskedasticity

Traditional finance approach: assume shocks are heteroskedastic

Here, conditional heteroskedasticity is endogenous

Nonlinear solution contains terms of form

$$x_{t+1}$$

so covariance Cov_t depends on state x_t
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

Additive separability with EZ implies model is nonhomogeneous:
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Additive separability with EZ implies model is nonhomogeneous: Shock to \(A_t, c_t \), causes an additive increase in \(V_t \)
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Additive separability with EZ implies model is nonhomogeneous:

Shock to \(A_t, c_t \), causes an additive increase in \(V_t \)

which reduces volatility of

\[\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \]

and

\[m_{t+1} = \frac{c_t}{c_{t+1}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \]
First-order vs. Second-order Stationarity

Model has a nonstochastic steady state
And is first-order stable, stationary around steady state
But model is second-order (slightly) nonstationary when $\alpha \neq 0$
First-order vs. Second-order Stationarity

Model has a nonstochastic steady state
And is first-order stable, stationary around steady state
But model is second-order (slightly) nonstationary when $\alpha \neq 0$
IES and Volatility Shocks

Long-run risks literature typically assumes IES $\gg 1$
IES and Volatility Shocks

Long-run risks literature typically assumes IES $\gg 1$

A main motivation: IES > 1 implies equity prices fall in response to an increase in volatility
IES and Volatility Shocks

Long-run risks literature typically assumes $\text{IES} \gg 1$

A main motivation: $\text{IES} > 1$ implies equity prices fall in response to an increase in volatility

Extend model above to include volatility shocks:

$$\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon_t^\sigma$$
IES and Volatility Shocks

Long-run risks literature typically assumes $I_{ES} \gg 1$

A main motivation: $I_{ES} > 1$ implies equity prices fall in response to an increase in volatility

Extend model above to include volatility shocks:

$$\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon_t^\sigma$$

Calibration: $\rho_\sigma = .98$, $\text{Var}(\varepsilon_t^\sigma) = (0.1)^2$
Impulse Responses to Volatility Shock

Volatility $\sigma_{A,t}$
Impulse Responses to Volatility Shock

Consumption C_t

percent

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

percent

0.0
10 20 30 40 50

Consumption C_t
Impulse Responses to Volatility Shock

Inflation π_t

ann. pct.

0.0

-0.1

-0.2

-0.3

-0.4

-0.5
Impulse Responses to Volatility Shock

Equity premium ψ_t^e
Impulse Responses to Volatility Shock

Equity price p_t^e

percent

0

10 20 30 40 50

-7

-6

-5

-4

-3

-2

-1

0

percent

10 20 30 40 50
Impulse Responses to Volatility Shock

Nominal term premium ψ_t
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.

Clearly at odds with financial crisis.

To generate feedback, want financial intermediaries whose net worth depends on assets.
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \implies$ economy affects asset prices.

However, asset prices have no effect on economy.

Clearly at odds with financial crisis.

To generate feedback, want financial intermediaries whose net worth depends on assets.

...but not in this paper.
Conclusions

1. A simple macroeconomic model (with high risk aversion) can explain a variety of asset pricing facts/puzzles

2. Unifies asset pricing puzzles into a single puzzle—Why is risk aversion in financial markets so high?

3. Provides a structural framework for intuition about risk premia

4. Suggests a mechanism for feedback from risk premia to macroeconomy