A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson
University of California, Irvine

EABCN-ECB-FRB Atlanta Conference on Nonlinearities in Macroeconomics and Finance in the Light of Crises
Frankfurt
December 16, 2014
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle—Why does risk aversion in the model need to be so high?
Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle—Why does risk aversion in the model need to be so high?

Motivation

Goal: Show that a simple macroeconomic model (with high risk aversion) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle—Why does risk aversion in the model need to be so high?

- financial intermediaries: Adrian-Etula-Muir (2013)
Motivation

Implications for Macroeconomics:

- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback
Motivation

Implications for Macroeconomics:
- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)
Motivation

Implications for Macroeconomics:
- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Secondary theme: Keep the model as simple as possible
Motivation

Implications for Macroeconomics:
- show how to match risk premia in DSGE framework
- can endogenize asset price–macroeconomy feedback

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Secondary theme: Keep the model as simple as possible

Two key ingredients:
- nominal rigidities
- Epstein-Zin preferences
Households

Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- log preferences for balanced growth, simplicity
- SDF comparable to finance literature
Households

Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- log preferences for balanced growth, simplicity
- SDF comparable to finance literature

Flow budget constraint:

\[a_{t+1} = e^{it} a_t + w_t l_t + d_t - c_t \]
Households

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi}$$

- additive separability between c and l
- log preferences for balanced growth, simplicity
- SDF comparable to finance literature

Flow budget constraint:

$$a_{t+1} = e^t a_t + w_t l_t + d_t - c_t$$

Calibration: (IES = 1), $\chi = 2$, $l = 1$ ($\eta = .54$)
Generalized Recursive Preferences

Household chooses state-contingent \{ (c_t, l_t) \} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]
Generalized Recursive Preferences

Household chooses state-contingent \{(c_t, l_t)\} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t)^{\rho} + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\alpha} \right)^{\rho/\alpha} \right]^{1/\rho}
\]

Calibration: \(\beta = 0.99, RRA (\text{R}c) = 60, (\alpha = 80.13)\)
Generalized Recursive Preferences

Household chooses state-contingent \{(c_t, l_t)\} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t) + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\tilde{\alpha}} \right)^{\rho/\tilde{\alpha}} \right]^{1/\rho}
\]

It’s easy to map back and forth from \(U\) to \(V\); moreover,

- \(V\) makes formulas in the paper simpler
- \(V\) is more closely related to standard dynamic programming results, regularity conditions, and FOCs
- additively separable \(u\) is easier to consider in \(V\)
Generalized Recursive Preferences

Household chooses state-contingent \{(c_t, l_t)\} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) + \beta \left(E_t V(a_{t+1}; \theta_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}
\]

Note: Generalized recursive preferences are often written as:

\[
U(a_t; \theta_t) = \max_{(c_t, l_t)} \left[\tilde{u}(c_t, l_t)^\rho + \beta \left(E_t U(a_{t+1}; \theta_{t+1})^{\tilde{\alpha}} \right)^{\rho/\tilde{\alpha}} \right]^{1/\rho}
\]

It’s easy to map back and forth from \(U\) to \(V\); moreover,

- \(V\) makes formulas in the paper simpler
- \(V\) is more closely related to standard dynamic programming results, regularity conditions, and FOCs
- additively separable \(u\) is easier to consider in \(V\)

Calibration: \(\beta = .99\), RRA \((R^c) = 60\) \((\alpha = 80.13)\)
Firms

Firms are very standard:

- continuum of monopolistically competitive firms (elasticity ϵ)
- Calvo price setting (probability $1 - \xi$)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} l_t(f)^\theta$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to Finance
- helps match equity premium
Firms are very standard:

- continuum of monopolistically competitive firms (elasticity ϵ)
- Calvo price setting (probability $1 - \xi$)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} l_t(f)^\theta$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to Finance
- helps match equity premium

Calibration: $\epsilon = 10$, $\xi = 0.75$, $\theta = 0.6$, $\sigma_A = .007$, $(\rho_A = 1)$, $\frac{k}{4Y} = 2.5$
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_{\pi}(\pi_t - \pi) + \phi_y(y_t - \bar{y}_t) \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho_{\bar{y}} \bar{y}_{t-1} + (1 - \rho_{\bar{y}}) y_t \]
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_{\pi}(\pi_t - \bar{\pi}) + \phi_{y}(y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho y \bar{y}_{t-1} + (1 - \rho y)y_t \]

Rule has no inertia:

- simplicity
Fiscal and Monetary Policy

No government purchases or investment:

\[C_t = Y_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_{\pi}(\pi_t - \bar{\pi}) + \phi_y(y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho_y \bar{y}_{t-1} + (1 - \rho_y)y_t \]

Rule has no inertia:

- simplicity

Calibration: \(\phi_{\pi} = 0.5, \ \phi_y = 0.75, \ \bar{\pi} = 0.01, \ \rho_y = 0.9\)
Solution Method

Write equations of the model in recursive form
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t

Solve using perturbation methods around nonstoch. steady state
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

Model has 3 state variables \((\bar{y}_t, \Delta_t, A_t)\), one shock \((\varepsilon_t)\)
Impulse Responses

Consumption C_t

percent

0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40 50

Model

Asset Prices

Discussion

Conclusions
Impulse Responses

Inflation π_t

ann. pct.

0.0
-0.2
-0.4
-0.6
-0.8
-1.0

10 20 30 40 50

Inflation π_t
Impulse Responses

Short-term nominal interest rate i_t

-0.5
-0.4
-0.3
-0.2
-0.1
0.0
ann. pct.
Impulse Responses

Short-term real interest rate r_t

![Graph showing the short-term real interest rate r_t over time. The graph plots the annual percentage change against time, with a downward curve indicating a decrease in the interest rate over time.](image-url)
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_{t}m_{t+1}(C_{t+1}^{\nu} + p_{t+1}^{e}) \]

where \(\nu \) is degree of leverage
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]

Calibration: \(\nu = 3 \)
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.39</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>7.29</td>
</tr>
</tbody>
</table>
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R_c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.39</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>7.29</td>
</tr>
</tbody>
</table>
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.39</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>7.29</td>
</tr>
<tr>
<td>60</td>
<td>.995</td>
<td>1.99</td>
</tr>
<tr>
<td>60</td>
<td>.99</td>
<td>1.19</td>
</tr>
<tr>
<td>60</td>
<td>.98</td>
<td>0.61</td>
</tr>
<tr>
<td>60</td>
<td>.95</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Equity Premium

Equity premium ψ_t^e

-25
-20
-15
-10
-5
0
ann. bp
Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$
Real Government Debt

Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$
Real government debt

Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$
Real Government Debt

Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

where

$$\hat{r}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)}$$

$$\hat{p}_t^{(n)} = e^{-r_t} E_t \hat{p}_{t+1}^{(n-1)}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$ p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)}, $$

$$ p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t} $$

Nominal yield:

$$ i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} $$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Nominal term premium:

$$\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

\[p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)}, \]

\[p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t} \]

Nominal yield:

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]

Nominal term premium:

\[\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)} \]

where

\[\hat{i}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)} \]

\[\hat{p}_t^{(n)} = e^{-i_t} E_t \hat{p}_{t+1}^{(n-1)} \]
Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)–(2y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2013<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>US TIPS, 2004–2013<sup>a</sup></td>
<td>0.29</td>
<td>0.41</td>
<td>0.72</td>
<td>1.01</td>
<td>1.34</td>
<td>1.05</td>
</tr>
<tr>
<td>US TIPS, 2004–2007<sup>a</sup></td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.70</td>
</tr>
<tr>
<td>UK indexed gilts, 1983–1995<sup>b</sup></td>
<td>6.12</td>
<td>5.29</td>
<td>4.34</td>
<td></td>
<td>4.12</td>
<td>–2.00</td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2013<sup>c</sup></td>
<td>2.19</td>
<td>2.15</td>
<td>2.26</td>
<td>2.35</td>
<td>2.44</td>
<td>0.25</td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007<sup>c</sup></td>
<td>2.82</td>
<td>2.77</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td>–0.02</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>1.92</td>
<td>1.89</td>
<td>1.84</td>
<td>1.81</td>
<td>1.77</td>
<td>–0.15</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2010) online dataset
^bEvans (1999)
^cBank of England web site
Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y) – (2y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2013<sup>a</sup></td>
<td>1.45</td>
<td></td>
<td>1.71</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US TIPS, 2004–2013<sup>a</sup></td>
<td>0.29</td>
<td>0.41</td>
<td>0.72</td>
<td>1.01</td>
<td>1.34</td>
<td>1.05</td>
</tr>
<tr>
<td>US TIPS, 2004–2007<sup>a</sup></td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.70</td>
</tr>
<tr>
<td>UK indexed gilts, 1983–1995<sup>b</sup></td>
<td>6.12</td>
<td>5.29</td>
<td>4.34</td>
<td>4.12</td>
<td></td>
<td>−2.00</td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2013<sup>c</sup></td>
<td>2.19</td>
<td>2.15</td>
<td>2.26</td>
<td>2.35</td>
<td>2.44</td>
<td>0.25</td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007<sup>c</sup></td>
<td>2.82</td>
<td>2.77</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td>−0.02</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>1.92</td>
<td>1.89</td>
<td>1.84</td>
<td>1.81</td>
<td>1.77</td>
<td>−0.15</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2010) online dataset
^bEvans (1999)
^cBank of England web site

Real long-term bonds are like insurance
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y) − (1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2013<sup>a</sup></td>
<td>5.44</td>
<td>5.66</td>
<td>5.84</td>
<td>6.11</td>
<td>6.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2013<sup>a</sup></td>
<td>5.64</td>
<td>5.87</td>
<td>6.07</td>
<td>6.38</td>
<td>6.62</td>
<td>6.89</td>
<td>1.25</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2013<sup>b</sup></td>
<td>7.22</td>
<td>7.39</td>
<td>7.55</td>
<td>7.79</td>
<td>7.97</td>
<td>8.15</td>
<td>0.93</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.30</td>
<td>6.38</td>
<td>6.48</td>
<td>6.51</td>
<td>6.50</td>
<td>0.30</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>4.52</td>
<td>4.79</td>
<td>5.01</td>
<td>5.36</td>
<td>5.60</td>
<td>5.84</td>
<td>1.32</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)−(1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2013<sup>a</sup></td>
<td>5.44</td>
<td>5.66</td>
<td>5.84</td>
<td>6.11</td>
<td>6.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2013<sup>a</sup></td>
<td>5.64</td>
<td>5.87</td>
<td>6.07</td>
<td>6.38</td>
<td>6.62</td>
<td>6.89</td>
<td>1.25</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2013<sup>b</sup></td>
<td>7.22</td>
<td>7.39</td>
<td>7.55</td>
<td>7.79</td>
<td>7.97</td>
<td>8.15</td>
<td>0.93</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.30</td>
<td>6.38</td>
<td>6.48</td>
<td>6.51</td>
<td>6.50</td>
<td>0.30</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>4.52</td>
<td>4.79</td>
<td>5.01</td>
<td>5.36</td>
<td>5.60</td>
<td>5.84</td>
<td>1.32</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk
Nominal Term Premium

Nominal term premium $\psi_t^{(40)}$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{nominal_term_premium.png}
\end{figure}
Defaultable Debt

Default-free depreciating nominal consol:

\[p^c_t = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p^c_{t+1}) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi t} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi t+1} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi t+1} \left[(1 - 1_{t+1}^d)(1 + \delta p_{t+1}^d) + 1_{t+1}^d \omega_{t+1} p_t^d \right] \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_c^t = E_t m_{t+1} e^{-\pi t+1} (1 + \delta p^c_{t+1}) \]

Yield to maturity:

\[i_c^t = \log \left(\frac{1}{p_c^t} + \delta \right) \]

Nominal consol with default:

\[p^d_t = E_t m_{t+1} e^{-\pi t+1} \left[(1 - 1^d_{t+1})(1 + \delta p^d_{t+1}) + 1^d_{t+1} \omega_{t+1} p^d_t \right] \]

Yield to maturity:

\[i^d_t = \log \left(\frac{1}{p^d_t} + \delta \right) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - 1^d_{t+1}) (1 + \delta p_{t+1}^d) + 1^d_{t+1} \omega_{t+1} p_t^d \right] \]

Yield to maturity:

\[i_t^d = \log \left(\frac{1}{p_t^d} + \delta \right) \]

The credit spread is \(i_t^d - i_t^c \).
Table 5: Credit Spread

<table>
<thead>
<tr>
<th></th>
<th>Average Ann. Default Prob.</th>
<th>Cyclicality of Default Prob.</th>
<th>Average Recovery Rate</th>
<th>Cyclicality of Recovery Rate</th>
<th>Credit Spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(.006 \times .58 = 34.8 \text{ bp} \)

If default is not cyclical, then it’s not risky.

In the data, credit spread is about 120 bp (Chen-Collin-Dufresne-Goldstein, 2009; Chen, 2010)
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>Average Ann. Default Prob.</th>
<th>Cyclicality of Default Prob.</th>
<th>Average Recovery Rate</th>
<th>Cyclicality of Recovery Rate</th>
<th>Credit Spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[
(0.006)(0.58) = 34.8 \text{ bp}
\]
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[(.006)(.58) = 34.8 \text{ bp}\]

If default is not cyclical, then it's not risky
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Note:

\[(.006)(.58) = 34.8 \text{ bp}\]

If default is not cyclical, then it's not risky

In the data, credit spread is about 120 bp (Chen-Collin-Dufresne-Goldstein, 2009; Chen, 2010)
Default Rate is Countercyclical

A. Default rates and credit spreads

- Moody's Recovery Rates
- Altman Recovery Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Moody's Annual Corporate Default Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920</td>
<td>8%</td>
</tr>
<tr>
<td>1930</td>
<td>6%</td>
</tr>
<tr>
<td>1940</td>
<td>4%</td>
</tr>
<tr>
<td>1950</td>
<td>2%</td>
</tr>
<tr>
<td>1960</td>
<td>0%</td>
</tr>
<tr>
<td>1970</td>
<td>0%</td>
</tr>
<tr>
<td>1980</td>
<td>0%</td>
</tr>
<tr>
<td>1990</td>
<td>0%</td>
</tr>
<tr>
<td>2000</td>
<td>0%</td>
</tr>
</tbody>
</table>

The "Long-Term Mean" recovery rate is 41.4%, based on Moody's data. Shaded areas are NBER-dated recessions.

source: Chen (2010)
Recovery Rate is Procyclical

Figure 1. Default rates, credit spreads, and recovery rates over the business cycle.

Panel A plots the Moody’s annual corporate default rates during 1920 to 2008 and the monthly Baa-Aaa credit spreads during 1920/01 to 2009/02. Panel B plots the average recovery rates during 1982 to 2008. The “Long-Term Mean” recovery rate is 41.4%, based on Moody’s data. Shaded areas are NBER-dated recessions. For annual data, any calendar year with at least 5 months being in a recession as defined by NBER is treated as a recession year.

default component of the average 10-year Baa-Treasury spread in this model rises from 57 to 105 bps, whereas the average optimal market leverage of a Baa-rated firm drops from 50% to 37%, both consistent with the U.S. data.

Figure 1 provides some empirical evidence on the business cycle movements in default rates, credit spreads, and recovery rates. The dashed line in Panel A plots the annual default rates over 1920 to 2008. There are several spikes in the default rates, each coinciding with an NBER recession. The solid line plots the monthly Baa-Aaa credit spreads from January 1920 to February 2009. The spreads shoot up in most recessions, most visibly during the Great Depression, the savings and loan crisis in the early 1980s, and the recent financial crisis in 2008. However, they do not always move in lock-step with default rates (the correlation at an annual frequency is 0.65), which suggests that other factors, such as recovery rates and risk premia, also affect the movements in spreads.

Next, business cycle variation in the recovery rates is evident in this chart. The Moody’s Recovery Rates are shown in solid line, Altman Recovery Rates in dashed line, and Long-Term Mean in dotted line.

source: Chen (2010)
<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
<tr>
<td>.006</td>
<td>-0.3</td>
<td>.42</td>
<td>0</td>
<td>125.5</td>
</tr>
</tbody>
</table>
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.4</td>
</tr>
<tr>
<td>.006</td>
<td>-0.3</td>
<td>.42</td>
<td>0</td>
<td>125.5</td>
</tr>
<tr>
<td>.006</td>
<td>-0.3</td>
<td>.42</td>
<td>2.5</td>
<td>136.8</td>
</tr>
</tbody>
</table>
Discussion

1. Endogenous conditional heteroskedasticity
2. First-order vs. second-order stationarity
3. IES ≤ 1 vs. IES > 1
4. Volatility shocks
5. Government purchases and monetary policy shocks
6. Financial accelerator
Note that

$$\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$
Endogenous Conditional Heteroskedasticity

Note that

$$\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r^e_{t+1} \right)$$

Risk premium can only vary over time if model implies conditional heteroskedasticity
Endogenous Conditional Heteroskedasticity

Note that

$$\psi^e_t = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Risk premium can only vary over time if model implies conditional heteroskedasticity

Traditional finance approach: assume shocks are heteroskedastic
Note that

$$\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Risk premium can only vary over time if model implies conditional heteroskedasticity

Traditional finance approach: assume shocks are heteroskedastic

Here, conditional heteroskedasticity is endogenous
Note that

\[\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right) \]

Risk premium can only vary over time if model implies conditional heteroskedasticity.

Traditional finance approach: assume shocks are heteroskedastic.

Here, conditional heteroskedasticity is endogenous.

Nonlinear solution contains terms of form

\[x_t \in t+1 \]

so covariance \(\text{Cov}_t \) depends on state \(x_t \).
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Additive separability with EZ implies model is nonhomogeneous:
Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Additive separability with EZ implies model is nonhomogeneous: Shock to \(A_t, c_t \), causes an additive increase in \(V_t \) (and \(E_t V_{t+1} \)
Endogenous Conditional Heteroskedasticity

Household period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

Additive separability with EZ implies model is nonhomogeneous: Shock to \(A_t, c_t \), causes an additive increase in \(V_t \) (and \(E_t V_{t+1} \)) which reduces volatility of

\[\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \]

and

\[m_{t+1} = \frac{c_t}{c_{t+1}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \]
First-order vs. Second-order Stationarity

Model has a nonstochastic steady state
And is first-order stable, stationary around steady state
But model is second-order (slightly) nonstationary when $\alpha \neq 0$
First-order vs. Second-order Stationarity

Model has a nonstochastic steady state
And is first-order stable, stationary around steady state
But model is second-order (slightly) nonstationary when $\alpha \neq 0$
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\text{IES} > 1$, for two reasons:

- ensures equity prices rise in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, $\text{IES} > 1$ is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).

Extend model above to include volatility shocks:

$$
\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon^\sigma_t
$$
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).

Extend model above to include volatility shocks:

\[
\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon_t^{\sigma}
\]
Impulse Responses to Volatility Shock

Volatility $\sigma_{A,t}$

![Graph showing the response of volatility to a shock over time.](image-url)
Impulse Responses to Volatility Shock

![Graph showing the impulse response of consumption to a volatility shock. The x-axis represents time (in weeks), and the y-axis represents the percent change in consumption. The graph shows a positive trend over time.]
Impulse Responses to Volatility Shock

Inflation π_t
Impulse Responses to Volatility Shock

Equity premium ψ_1^e
Impulse Responses to Volatility Shock

Equity price p_t^e

percent

0

10 20 30 40 50

-7

-6

-5

-4

-3

-2

-1

0

percent
Impulse Responses to Volatility Shock

Nominal term premium ψ_t (40)

ann. bp

0 10 20 30 40 50
0
5
10
15
20
25
30

Nominal term premium ψ_t (40)
Rudebusch and Swanson (2012) consider similar model with
- technology shock
- government purchases shock
- monetary policy shock
Rudebusch and Swanson (2012) consider similar model with
- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables
Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

But technology shock is most important (by far) for fitting asset prices:

- technology shock is more persistent
- technology shock makes nominal assets risky
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset

Economy affects $m_{t+1} \implies$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.

Clearly at odds with financial crisis.

To generate feedback, want financial intermediaries whose net worth depends on assets.

...but not in this paper.
Conclusions

1. A simple macroeconomic model (with high risk aversion) can explain a variety of asset pricing facts/puzzles.

2. Unifies asset pricing puzzles into a single puzzle—Why is risk aversion in financial markets so high? (Literature provides good answers to this question)

3. Provides a structural framework for intuition about risk premia.

4. Suggests a mechanism for feedback from risk premia to macroeconomy.