Discussion of Gilchrist and Zakrajšek: “Credit Risk and the Macroeconomy”

Eric T. Swanson

Economic Research
Federal Reserve Bank of San Francisco

Conference on
“Financial Shocks and the Real Economy”
UC Davis
April 16, 2010
This paper (and project as a whole) has two general goals:
1. Provide better measure of firms’ borrowing costs
2. Measure effect of firms’ borrowing costs on macroeconomy

background: principal-agent problem, deadweight loss, bankruptcy, monitoring, adverse selection, etc.
This paper (and project as a whole) has two general goals:

1. Provide better measure of firms’ borrowing costs
2. Measure effect of firms’ borrowing costs on macroeconomy
This paper (and project as a whole) has two general goals:

1. **Provide better measure of firms’ borrowing costs**

2. **Measure effect of firms’ borrowing costs on macroeconomy**
Gilchrist, Zakrajšek, et al.:
- Gilchrist and Zakrajšek (2007 NBERWP)
- Gilchrist, Yankov, and Zakrajšek (2009 JME)
- Gilchrist, Ortiz, and Zakrajšek (2008)
- Gilchrist and Zakrajšek (2010)

This paper (and project as a whole) has two general goals:

1. **Provide better measure of firms’ borrowing costs**
2. **Measure effect of firms’ borrowing costs on macroeconomy**

background: principal-agent problem, deadweight loss, bankruptcy, monitoring, adverse selection, etc.
Problems with Moody’s Baa, Merrill-Lynch BBB indexes:
Problems with Moody’s Baa, Merrill-Lynch BBB indexes:

- mix of seniorities
- mix of maturities
- mix of coupon rates

unweighted or weighted average, “bums problem”
include callable bonds
include Yankee bonds

credit ratings may be stale, endogenous, smooth
Data

Problems with Moody’s Baa, Merrill-Lynch BBB indexes:

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average
Problems with Moody’s Baa, Merrill-Lynch BBB indexes:

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, “bums problem”
Problems with Moody’s Baa, Merrill-Lynch BBB indexes:

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, “bums problem”
- include callable bonds
- include Yankee bonds
Problems with Moody’s Baa, Merrill-Lynch BBB indexes:

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, “bums problem”
- include callable bonds
- include Yankee bonds
- credit ratings may be stale, endogenous, smooth
Greek 2-yr. Bond Yield and S&P Credit Rating
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define $S^k_{it} =$ spread between yield-to-maturity on bond k for firm i relative to synthetic default-free benchmark.
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond k for firm i relative to synthetic default-free benchmark.

4. Define GZ spread $= \text{average of } S_{it}^k$.

Caveats:
- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define $S_{it}^k = \text{spread between yield-to-maturity on bond } k \text{ for firm } i \text{ relative to synthetic default-free benchmark.}$

4. Define **GZ spread** = average of S_{it}^k.

Caveats:

- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define \(S^k_{it} \) = spread between yield-to-maturity on bond \(k \) for firm \(i \) relative to synthetic default-free benchmark.

4. Define GZ spread = average of \(S^k_{it} \).

Caveats:
- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)
The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same expected cash flows.

3. Define $S_{it}^k = \text{spread between yield-to-maturity on bond } k \text{ for firm } i \text{ relative to synthetic default-free benchmark.}$

4. Define GZ spread $= \text{average of } S_{it}^k$.

Caveats:
- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)
Going into Recession

Graph showing the relationship between yield and maturity.

Eric T. Swanson (FRBSF)
Yield curve becomes downward sloping.
Going into Recession

Duration of defaultable bond decreases relative to default-free benchmark.
Going into Recession

Result: even if zero coupon corporate spreads are constant, GZ spread increases.

Diagram:
- Yield on the vertical axis.
- Maturity on the horizontal axis.
- Defaultable bond trajectory.
- Default-free benchmark trajectory.
- Arrows indicating increase.
Gürkaynak-Sack-Wright Zero Coupon Yield Curve
Generalized Gürkaynak-Sack-Wright
Merton (1974) distance to default:

\[DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma^2_V)}{\sigma_V} \]
Gilchrist-Zakrajšek Excess Bond Premium

Merton (1974) distance to default:

\[
DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma^2_V)}{\sigma_V}
\]

Regress \(S^k_{it} \) on components of distance-to-default model:

\[
\log S^k_{it} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu v_{i,t-1} + \beta_3 \log \sigma v_{i,t-1} + \theta' x^k_{it} + \epsilon^k_{it}
\]

Note: if bond \(k \) is callable, \(x \) includes level, slope, curvature, and volatility of Treasury yields.

Excess bond premium: cross-sectional average of OLS residuals:

\[
EBP_t = \frac{1}{n_t} \sum_k \hat{\epsilon}_{kt}
\]
Merton (1974) distance to default:

\[
DD = \frac{\log \left(\frac{V}{D} \right) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}
\]

Regress \(S_{it}^k \) on components of distance-to-default model:

\[
\log S_{it}^k = \beta_1 \log \left[\frac{D}{V} \right]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k
\]

Note: if bond \(k \) is callable, \(x \) includes level, slope, curvature, and volatility of Treasury yields.
Gilchrist-Zakrajšek Excess Bond Premium

Merton (1974) distance to default:

\[
DD = \log \left(\frac{V}{D} \right) + \left(\mu_V - 0.5\sigma_V^2 \right) \frac{1}{\sigma_V}
\]

Regress \(S^{k}_{it} \) on components of distance-to-default model:

\[
\log S^{k}_{it} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k
\]

note: if bond \(k \) is callable, \(x \) includes level, slope, curvature, and volatility of Treasury yields.

Excess bond premium: cross-sectional average of OLS residuals:

\[
EBP_t = \frac{1}{n_t} \sum_k \hat{\epsilon}_{it}^k
\]
\[
\log S^k_{it} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x^k_{it} + \epsilon^k_{it}
\]

Idea:

\[S^k_{it} = \text{expected losses from default} + \text{default risk premium}\]
\[\log S_{it}^k = \beta_1 \log \left(\frac{D}{V} \right)_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k \]

Idea:

\[S_{it}^k = \text{expected losses from default} + \text{default risk premium} \]

However, GZ expected default measure is very rough:

- why \(\log S_{it}^k \)?
\[
\log S^k_{it} = \beta_1 \log \frac{D}{V}_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x^k_{it} + \epsilon^k_{it}
\]

Idea:

\[
S^k_{it} = \text{expected losses from default} + \text{default risk premium}
\]

However, GZ expected default measure is very rough:

- why log \(S^k_{it} \)?
- Bharath-Shumway (2008 RFS)
\[
\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{i,t-1} + \beta_3 \log \sigma_{i,t-1} + \theta^{'} x_{it}^k + \epsilon_{it}^k
\]

Idea:

\[S_{it}^k = \text{expected losses from default} + \text{default risk premium}\]

However, GZ expected default measure is very rough:

- why \(\log S_{it}^k\)?
- Bharath-Shumway (2008 RFS)
log $S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu V_{i,t-1} + \beta_3 \log \sigma V_{i,t-1} + \theta' x_{it}^k + \epsilon_{it}^k$

Idea:

$S_{it}^k = \text{expected losses from default} + \text{default risk premium}$

However, GZ expected default measure is very rough:

- why log S_{it}^k?
- Bharath-Shumway (2008 RFS)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models
\[\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k \]

Idea:

\[S_{it}^k = \text{expected losses from default} + \text{default risk premium} \]

However, GZ expected default measure is very rough:

- why \(\log S_{it}^k \)?
- Bharath-Shumway (2008 RFS)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models

Moreover, default risk premium likely depends on \(V, \sigma_V, \mu_V, x, \ldots \)
\[\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k \]

Idea:

\[S_{it}^k = \text{expected losses from default} + \text{default risk premium} \]

However, GZ expected default measure is very rough:
- why log \(S_{it}^k \)?
- Bharath-Shumway (2008 RFS)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models

Moreover, default risk premium likely depends on \(V, \sigma_V, \mu_V, x, \ldots \)

Hard to interpret what GZ excess bond premium is exactly
Figure 8: Implications of a Shock to the Excess Bond Premium
(Sample Period: 1973:Q1–2009:Q4)

Excess bond premium

Investment

Quarters after shock

Percentage points

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Excess bond premium

Investment

Quarters after shock

Percentage points

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
VAR Identification?

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield
VAR Identification?

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?
Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?

Questions about structural interpretation:

- risk premia are endogenous; what is the structural shock?
- is decrease in I due to tighter credit, or structural shock?
VAR Identification?

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?

Questions about structural interpretation:

- risk premia are endogenous; what is the structural shock?
- is decrease in I due to tighter credit, or structural shock?

In Bernanke-Gertler-Gilchrist (1996), credit channel was an amplification mechanism. Not a shock.
5.2.2. Shock to technology, demand, and wealth

Figure 4 displays the effects on output of three alternative shocks: a technology shock, a demand shock (specifically a shock to government expenditures), and a redistribution of wealth between entrepreneurs and households. Once again, the hatched lines show impulse responses from the baseline model with the financial accelerator shut off, and the solid lines show the results from the full model.

As the figure shows, the financial accelerator magnifies and propagates both the technology and demand shocks. Interestingly, the magnitude of the effects is about the same as for the monetary policy shock. Again, the central mechanism is the rise in asset prices associated with the investment boom, which raises net worth and thus reduces the external finance premium. The extra persistence comes about because net worth is slow to revert to trend.

A positive shock to entrepreneurial wealth (more precisely, a redistribution from households to entrepreneurs) has essentially no effect in the baseline model, but has both significant impact and propagation effects when credit-market frictions are present. The wealth shock portrayed is equal in magnitude to about 1% of the initial wealth of entrepreneurs and about 0.05% of the wealth of households. The transfer of wealth drives up the demand for investment goods, which raises the price of capital and thus entrepreneurs' wealth, initiating a positive feedback loop; thus, although the exogenous shock increases entrepreneurial net worth directly by only 1%, the total effect on entrepreneurs' wealth including the endogenous increase in asset prices exceeds 2%. Output rises by 1% at an annual rate, and substantial persistence is generated by the slow decay of entrepreneurial net worth.

Thus the addition of credit-market effects raises the possibility that relatively small changes in entrepreneurial wealth could be an important source of cyclical fluctuations. This case is an interesting one, as it is reminiscent of (and motivated by) Fisher's (1933) "debt-deflation" argument, that redistributions between creditors and debtors arising from unanticipated price changes can have important real effects. Indeed, Fisher argued...
Figure 1
Impulse Responses to One Percentage Point Federal Funds Rate Shock

Figure 2
Impulse Responses to One Percent Technology Shock

Figure 3
Impulse Responses to One Percent Government Purchases Shock

Risk premium is endogenous and may be positively or negatively correlated with output, depending on the structural shock.
risk premium is endogenous
may be positively or negatively correlated with output, depending on the structural shock
GZ spread takes advantage of micro bond data, improves on Moody’s, Merrill-Lynch indexes
GZ spread takes advantage of micro bond data, improves on Moody’s, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
GZ spread takes advantage of micro bond data, improves on Moody’s, Merrill-Lynch indexes
- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis
GZ spread takes advantage of micro bond data, improves on Moody’s, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis

Excess bond premium has high forecasting power
Summary

GZ spread takes advantage of micro bond data, improves on Moody’s, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis

Excess bond premium has high forecasting power

- But what is it?
- Structural interpretation of shocks?
- VAR identification?